
LA-UR 97.476

Approved for public release; distribution is unlimited

Improving Spanning Trees by Upgrading Nodes

Authors: S.O. Krumke, M.V. Marathe, H. Noltemeir, R. Ravi, S. Ravi

LOS ALAMOS
NATIONAL LABORATORY
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is
operated by the University of California for the U.S. Department of Energy under
contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that
the U.S. Government retains a non-exclusive, royalty-free license to publish or
reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher
identify this article as work performed under the auspices of the U.S. Department of
Energy. The Los Alamos National Laboratory strongly supports academic freedom and
a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse this viewpoint of a publication or guarantee its technical correctness.

Improving Spanning Trees

by Upgrading Nodes

Sven O. Krumke, Hartmut Noltemeier, Hans-C. Wirth

Department of Computer Science, University of W�urzburg, Am Hubland,
97074 W�urzburg, Germany.

Email:fkrumke,noltemei,wirthg@informatik.uni-wuerzburg.de

Madhav V. Marathe

Los Alamos National Laboratory, P.O. Box 1663, MS B265, Los Alamos,
NM 87545, USA. Email: madhav@c3.lanl.gov

R. Ravi

GSIA, Carnegie Mellon University, Pittsburgh, PA 15213. Email: ravi+@cmu.edu

S. S. Ravi

Department of Computer Science, University at Albany { SUNY, Albany,
NY 12222, USA. Email: ravi@cs.albany.edu

R. Sundaram

Delta Trading Co. Work done while at MIT, Cambridge MA 02139. Email:
koods@theory.lcs.mit.edu

Abstract

Id: upgrade.tex,v 2.2 1997/09/18 13:14:08 krumke Exp wirth

We study bottleneck constrained network upgrading problems. We are given an
edge weighted graph G = (V;E) where node v 2 V can be upgraded at a cost of
c(v). This upgrade reduces the delay of each link emanating from v. The goal is
to �nd a minimum cost set of nodes to be upgraded so that the resulting network
has a good performance. The performance is measured by the bottleneck weight of
a minimum spanning tree.

We give a polynomial time appoximation algorithm with logarithmic performance
guarantee, which is tight within a small constant factor as shown by our hardness
results.

Preprint submitted to Elsevier Preprint 24 September 1997

Key words: NP-hardness, Approximation Algorithms, Network Design,
Spanning-Tree.

1 Introduction

Several problems arising in areas such as communication networks can be
expressed in the following general form: Enhance the performance of an un-
derlying network by carrying out upgrades at certain nodes or edges of the
network [Ber92,Phi93,PS95,KN+96].

In communication networks, upgrading a node corresponds to installing faster
communication equipment at that node. Such an upgrade reduces the commu-
nication delay along each edge emanating from the node. Similarly, upgrading
an edge can be achieved by replacing the old line with a new optical cable. In
general, there is a cost for improving each node or edge in the existing network
by a unit amount. The goal is to design a strategy to upgrade the network
such that it has a good performance while the upgrading cost is minimized.

2 Preliminaries and Problem De�nition

The node based upgrading model discussed in this paper can be formally de-
scribed as follows. Let G = (V;E) be a connected undirected graph with
n := jV j vertices and m := jEj edges. For each edge e 2 E, we are given
three integers d0(e) � d1(e) � d2(e) � 0. The value di(e) represents the length
or delay of the edge e if exactly i of its endpoints are upgraded. Thus, the
upgrade of a node v reduces the delay of each edge incident with v.

For each node v 2 V the value c(v) speci�es how expensive it is to upgrade
the node. For a subset W of V , the cost of upgrading all the nodes in W ,
denoted by c(W), is equal to

P
v2W c(v). The edge weight function resulting

from an upgrade of the node set W is denoted by dW . The bottleneck graph
Bottleneck(G; dW ;D) contains all edges e 2 E with dW (e) � D.

Given a bound D on the bottleneck delay of a subgraph, we partition the
set of edges into four sets according to how many of the endpoints must be
upgraded in order to decrease the delay of an edge below the threshold D. An
edge of delay d0(e) � D is called an uncritical edge. An edge e is said to be
1-critical, if d0(e) > D � d1(e), and 2-critical, if d1(e) > D � d2(e). Finally,
if d2(e) > D, the edge e is called useless. Without loss of generality we can
assume that the graph does not contain any useless edges.

2

We are now ready to formulate the problems studied in this paper.

De�nition 1 (Bottleneck Tree Upgrading Problem) Let G = (V;E) be
an edge and node weighted graph as above. Given a bound D, the upgrading
bottleneck spanning tree problem, (Node Upgrading Cost, Bottleneck,
Spanning Tree), is to upgrade a set W � V of nodes such that the resulting
graph has a spanning tree of bottleneck delay at most D and c(S) is minimized.

2.1 Bicriteria Problems and Approximations

The given problem is an example for a bicriteria problem. A general bicriteria
network upgrade problem (f1; f2;S) is de�ned by two minimization objec-
tives f1 and f2 and a class S of subgraphs. The problem speci�es a budget
value D on the objective f2. A solution x is valid, if it belongs to the graph
class S and satis�es the constraint f2(x) � D on the objective f2. The goal is
to �nd a f1-minimal solution amongst all valid solutions.

Since the arising problems are NP-hard in general, it is senseful to search for
approximative solutions which can be computed in polynomial time.

De�nition 2 (Performance of Approximation) Let P = (f1; f2;S) be a
bicriteria problem. A polynomial time algorithm has performance (�; �) for P ,
if for all instances the algorithm produces a solution x 2 S such that f2(x) �
� �D and f1(x) � � � f1(x�), where x� denotes an optimal (valid) solution and
D is the given bound on objective f2 in the instance.

2.2 Dual Problems

The problem in De�nition 1 is formulated by specifying a bound on the bottle-
neck delay after the upgrade, while the upgrading cost is to be minimized. It is
also meaningful to consider the corresponding dual problem, (Bottleneck,
Node Upgrading Cost, Spanning Tree), where we are given a bound
on the upgrading cost and want to obtain the best possible bottleneck delay
while staying within our budget restrictions.

The following lemma shows that if we have a good approximation algorithm
for (Node Upgrading Cost, Bottleneck, Spanning Tree), we can
convert it into a good approximation algorithm for the dual problem (Bot-
tleneck, Node Upgrading Cost, Spanning Tree) with only a minor
additional computational e�ort.

We will use this result and formulate our approximation algorithms only for

3

(Node Upgrading Cost, Bottleneck, Spanning Tree), which will be
more convenient.

Lemma 3 Suppose that A is a bicriteria approximation algorithm for (Node
Upgrading Cost, Bottleneck, Spanning Tree) with a performance
of (�; �). Then, one can construct an approximation algorithm for (Bot-
tleneck, Node Upgrading Cost, Spanning Tree) with performance of
(�; �) by using O(logm) � O(log n) calls to A, plus an overhead of O(m logm)
elementary operations, where G = (V;E) is the graph given in the input.

PROOF. Let A be an (�; �)-approximation algorithm for (Node Upgrad-
ing Cost, Bottleneck, Spanning Tree). We will show how to use A to
construct a (�; �)-approximation algorithm for the dual problem.

An instance of (Bottleneck, Node Upgrading Cost, Spanning Tree)
is speci�ed by a graph G = (V;E), the node cost function c, the weight
functions d0, d1, and d2 on the edges and the bound B on the node upgrading
cost. We denote by OPT the optimum bottleneck weight of an MST after
upgrading a vertex set of cost at most B. Observe that OPT is an integer
such thatD2 � OPT � D0 whereD2 := mine2E d2(e) andD0 := maxe2E d0(e).
Moreover, the set

M := f d0(e); d1(e); d2(e) : e 2 E g

of possible values for OPT has size O(m).

We sort M in time O(m logm). Then we use a binary search to �nd the
minimum integer D 2 M and algorithm A applied to the instance of (Node
Upgrading Cost, Bottleneck, Spanning Tree) given by the weighted
graph G as above and the bound D on the bottleneck weight of an MST
after the upgrade outputs an upgrading set of cost at most �B. It is easy to
see that this binary search indeed works, uses O(log jM j) � O(logm) calls
to algorithm A, and terminates with a value D � OPT. The corresponding
upgrading set W leads to an MST in (G; dW) with bottleneck weight at most
� �D � � �OPT and upgrading cost c(W) � � �B.

By similar techniques, an approximation algorithm for (Bottleneck, Node
Upgrading Cost, Spanning Tree) can be converted into an approxi-
mation algorithm for (Node Upgrading Cost, Bottleneck, Spanning
Tree). In this case we use the bicriteria algorithm to search for the optimal
upgrading cost. This is stated in the following lemma.

Lemma 4 Suppose that A is a bicriteria approximation algorithm for (Bot-
tleneck, Node Upgrading Cost, Spanning Tree) with a performance

4

of (�; �). Then, there is a (�; �)-approximation algorithm for (Node Up-
grading Cost, Bottleneck, Spanning Tree). 2

It should be noted that the conversion of an algorithm for (Node Upgrad-
ing Cost, Bottleneck, Spanning Tree) has the nice property that the
running time increases only by a factor of O(log n), while the other way round
we get a factor of O(logC), where C =

P
v2V c(v).

3 Related Work

Some node upgrading problems have been investigated under a simpler model
by Paik and Sahni [PS95]. In their model, the delay of an edge is decreased
by constant factors of � or �2, when one or two of its endpoints are upgraded,
respectively. Clearly, this model is a special case of the model treated in our
paper.

Under their model, Paik and Sahni studied the upgrading problem for several
performance measures including the maximumdelay on an edge and the diam-
eter of the network. They presented NP-hardness results for several problems.
Their focus was on the development of polynomial time algorithms for spe-
cial classes of networks (e.g. trees, series-parallel graphs) rather than on the
development of approximation algorithms. Our constructions can be modi�ed
to show that all the problems considered here remain NP-hard even under the
Paik-Sahni model.

A special case of the problems studied in this paper is the case of all nodes hav-
ing the same upgrading costs. For spanning trees, these problems, namely (Up-
grading Size, Bottleneck, Spanning Tree) and its dual version (Bot-
tleneck, Upgrading Size, Spanning Tree), are investigated in [KM+98].
The authors give a (5 + 4 ln�; 1)-approximation algorithm for (Upgrading
Size, Bottleneck, Spanning Tree), where � is the maximum degree of
the graph. The algorithm can be implemented to run in time O(n+m). The
analysis showed a better performance guarantee of (2 + 2 ln�; 1) for the case
that the input does not contain any 2-critical edges.

A related problem is (Upgrading Cost, Bottleneck, Graph) which has
been introduced called LinkDelay in [PS95]. Paik and Sahni showed the NP-
hardness. A (2; 1)-approximation algorithm for LinkDelay has been provided
in [KM+98].

Edge-based network upgrading problems have also been considered in the
literature [Phi93,Ber92,KN+97,HT97]. There, each edge has a current weight
and a minimum weight below which the edge weight cannot be decreased.

5

Upgrading an edge corresponds to decreasing the weight of that particular
edge and there is a cost associated with such an upgrade. The goal is to
obtain an upgraded network with the best performance.

4 An Algorithm for Bottleneck Upgrading

In this section, we present our approximation algorithm for (Node Upgrad-
ing Cost, Bottleneck, Spanning Tree). This algorithm provides a per-
formance guarantee of (2 lnn; 1) on a graph G = (V;E) with n := jV j nodes.
In Section 6 we will counterbalance this approximation result with a hardness
result which shows that, unless NP � DTIME(NO(log logN)), this performance
is essentially the best possible.

4.1 Overview

We �rst give a brief overview of our algorithm. The algorithm maintains a
set W of nodes, a set F of edges and a set C of clusters which partition the
vertex set V of the given graph G. The set C of clusters is initialized to be the
set of connected components of the bottleneck graph Bottleneck(G; dW ;D),
containing only those edges e which have a delay d0(e) of at most D. The
set W contains the upgraded nodes and is initially empty.

The algorithm iteratively merges clusters until only one cluster remains. To
this end, in each iteration it determines a node v of minimum quotient cost.
The quotient cost of a node v is the ratio whose numerator is the cost of v plus
the costs of some nodes adjacent to v in di�erent clusters via 2-critical edges,
and whose denominator is the number of clusters which have nodes adjacent to
v. A precise de�nition of the quotient cost appears in Equation (1) below. This
quotient cost measures the \average upgrading cost" of v and the vertices that
are adjacent to v through 2-critical edges. The algorithm then adds v and the
nodes mentioned above to the solution set W and merges the corresponding
clusters.

The algorithm is shown in Algorithm 1. It is easy to see that the setW output
by the algorithm is indeed a valid upgrading set, since all the edges added to
F in Step 10 will be of delay at most D after upgrading the nodes in W .

De�nition 5 (Quotient Cost) Let C = fC1; : : : ; Cpg be the connected com-
ponents of (V; F) at some iteration of the algorithm.

If v 2 Cj or v is adjacent to a node in Cj via a 1-critical edge, then we set
c(v;Cj) := 0. If all the edges from v to Cj are 2-critical, then we set c(v;Cj)

6

Algorithm 1 Approximation algorithm for spanning trees.

Input: A graph G = (V;E), three edge weight functions d0, d1, d2,
a node weight function c, and a number D

1 W ;
2 G0 Bottleneck(G; dW ;D)
3 C1; : : : ; Cq connected components of G0

4 F set of edges of G0

5 while G0 = (V; F) has more than one connected component do
6 fAssume that C = fC1 : : : ; Cpg is the set of componentsg
7 Find a node v 2 V in the graph with minimum quotient cost as de�ned

in De�nition 5.
8 Let C1; : : : ; Cr be the components in C chosen in Step 7 above, where

w.l.o.g. v 2 C1.
9 Let e2; : : : ; er be a set of edges in G connecting v to C2; : : : ; Cr, respec-

tively.
10 F F [fe2; : : : ; erg fMerge C1; C2; : : : ; Cr into one componentg
11 W W [fvg fAdd center to upgrading setg
12 for i 2; : : : ; r do
13 if ei = (v; vi) is 2-critical then
14 W W [fvig fAdd �nger to upgrading setg
15 end if
16 end for

fNote that the total cost of the nodes added to the solutionW is exactly
c(v) +

Pr
j=1 c(v;Cj).g

17 C1; : : : ; Cp0 connected components of G0 = (V; F)
18 end while
19 return W

to be the minimum cost of a vertex in Cj adjacent to v. If there is no edge
between v and any node in Cj, then c(v;Cj) := +1.

We now de�ne the quotient cost q(v) of v as follows:

q(v) := min
2�r�p

min
fC1;::: ;Crg�C

c(v) +
Pr

j=1 c(v;Cj)

r
: (1)

Notice that the quotient cost of a node can be computed in polynomial time:
We can order the components in C as C1; C2; C3; : : : in nondecreasing or-
der of c(v;Cj) (where without loss of generality v 2 C1). In computing the
quotient cost of v, it is su�cient to consider the p subsets of C of the form
fC1; C2; : : : ; Crg, where 2 � r � p.

In the sequel, we useW � to denote an optimal upgrading set, i.e., an upgrading
set of minimal cost OPT := c(W �). We now proceed to prove the following

7

theoremwhich indicates the performance guarantee provided by the algorithm.

Theorem 6 Algorithm 1 as applied to (Node Upgrading Cost, Bottle-
neck, Spanning Tree) has a performance of (2 lnn; 1), where n denotes the
number of nodes in the graph.

Our proof of Theorem 6 relies mainly on an averaging lemma which is proved
by using the notion of a claw decomposition introduced below.

4.2 Claw Decompositions

De�nition 7 (Claw, claw decomposition) A graph G = (V;E) is called
a claw, if there is a node c 2 V such that the edge set E is of the form
E = f (c; v) : v 2 V n fcg g. The node c is called a center of the claw, the
remaining nodes are called �ngers. The center is uniquely determined if there
are at least 3 nodes in the claw. A claw consisting of one single node is called
a trivial claw.

Let G be a graph with node set V . A claw decomposition of V in G is a
collection of node-disjoint nontrivial claws, which are all subgraphs of G and
whose vertices form a partition of V .

The following theorem can be proven by an easy induction on n := jV j:

Theorem 8 Let G be a connected graph with node set V , where jV j � 2.
Then there is a claw decomposition of V in G. 2

4.3 An Averaging Lemma

Lemma 9 Let v be a node chosen in Step 7 of Algorithm 1 and let C denote
the total cost of the nodes added to the solution set W in this iteration. Let
there be p clusters before v is chosen and assume that in this iteration r clusters
are merged. Then

C

r
�

OPT

p
:

PROOF. Let T � be an optimal tree with the nodes W � be the upgraded
nodes. Let OPT := c(W �) be the cost of the optimal solution. Let C =
C1; : : : ; Cp be the clusters when the node v was chosen and let T �(v) be
the graph obtained from T � by contracting each Cj to a supernode. T �(v) is
connected and contains all supernodes. We then remove edges (if necessary)

8

from T �(v) so as to make it a spanning tree. Note that all the edges in this
tree are critical.

Let A � W � be the set of nodes in the optimal solution that are adjacent
to another cluster in T �(v). Clearly, the cost of these nodes is no more than
OPT. Take a claw decomposition of T �(v). We now obtain a set of claws in the
graph G itself in the following way: Initialize E0 to be the empty set. For each
claw in the decomposition with center C 0

1 and �ngers C 0
2; : : : ; C

0
l we do the

following: For each edge (C 0
1; C

0
j) the optimal tree T � must have contained an

edge (u;w) with u 2 C 0
1 and w 2 C 0

i. Notice that since this edge was critical,
at least one of the vertices u and w must belong to A � W �. We add (u;w)
to E0.

It is easy to see that the subgraph of G induced by the edges in E0 consists
of disjoint nontrivial claws. Also, all edges in the claws were critical and the
total number of nodes in the claws is at least p. We need one more useful
observation: If a claw center is not contained in A, then all the �ngers of the
claw must be contained in A, since the edges in the claw were critical.

Let Ac be the set of nodes fromA acting as centers in the just generated claws.
Let A1 denote the �ngers of the claws contained in A which are connected to
their claw center via a 1-critical edge, whereas A2 stands for the set of �ngers
adjacent to the center via a 2-critical edge and also contained in A. For each
claw with exactly two nodes we designate an arbitrary one of the nodes to be
the center. Then by construction, Ac, A1, and A2 are disjoint. Therefore,

OPT �
X

u2Ac[A2

c(u) +
X
u2A1

c(u): (2)

For a node u 2 Ac, let Nu denote the number of vertices in the claw centered
at u. We have seen that if a center is not in A, then all the �ngers belong to
the optimal solution. Clearly, this can only happen, if the claw centered at u
does not contain a 2-critical edge. Thus, we can estimate the total number of
nodes in the claws from above by summing up the cardinalities of the claws
with centers in A and for all other claws adding twice the number of �ngers.
Hence

X
u2Ac

Nu + 2jA1j � jfw : w belongs to some claw gj � p; (3)

since the total number of nodes in the claws is at least p.

We now estimate the �rst sum in (2). If u 2 Ac, then the quotient cost of u
is at most the cost of u plus the cost of the �ngers in the claw that are in
A2 divided by the total number of nodes in the claw. This in turn is at least
C=r by the choice of the algorithm in Step 7. By summing up over all those

9

centers, this leads to

X
u2Ac[A2

c(u) �
C

r

X
u2Ac

Nu: (4)

Now, for a node u in A1, its quotient cost is at most c(u)=2, which again is at
least C=r. Thus

X
u2A1

c(u) �
X
u2A1

2
C

r
= 2jA1j �

C

r
: (5)

Using (4) and (5) in (2) yields

OPT �
X

u2Ac[A2

c(u) +
X
u2A1

c(u)

�
C

r

0
@X
u2Ac

Nu + 2jA1j

1
A

(3)

�
C

r
� p:

This proves the claim.

4.4 A Potential Function Argument

We are now ready to complete the proof of the performance stated in Theo-
rem 6. Assume that the algorithm uses f iterations of the loop and denote by
v1; : : : vf the vertices chosen in Step 7 of the algorithm.

Let �j denote the number of clusters after choosing vertex vj in this iteration.
Thus, for instance, �0 = t, the number of components at the beginning of the
whole algorithm and �f = 1, since we end up with one cluster. Let the number
of clusters merged using vertex vj be rj and the total cost of the vertices added
in that iteration be cj. Then we have

�j = �j�1 � (rj � 1): (6)

Notice that, since rj � 2, we have rj � 1 � 1
2rj. Using this inequality in (6)

we obtain

�j � �j�1 �
1

2
rj: (7)

Observe that �j � 2 for j = 0; : : : ; f � 1, since the algorithm does not stop
before the f -th iteration. Notice also that �f = 1. Then by Lemma 9, we have

rj �
cj�j�1
OPT

(8)

10

for all 0 � j � f . We now use an analysis technique due to Leighton and
Rao [LR88] to complete the proof. Substituting equation (8) into (7) yields

�j � �j�1 �
1

2
�
cj�j�1
OPT

= �j�1 �
�
1 �

cj
2 �OPT

�
: (9)

Using the recurrence (9), we obtain

�f � �0

fY
j=1

�
1 �

cj
2 �OPT

�
: (10)

Taking natural logarithms on both sides and simplifying using the estimate
ln(1� �) � �� , we obtain

2 �OPT � ln

�0
�f

!
�

fX
j=1

cj: (11)

Notice that by Lemma 9 we have

cj � OPT �
rj
�j�1

� OPT < 2 �OPT;

and so the logarithms of all the terms in the product of (10) are well de�ned.

Note also that �0 � n := jV j and �f = 1 and hence from (11) we get

fX
j=1

cj � 2 �OPT � lnn: (12)

Notice that the total cost of the nodes chosen by the algorithm is exactly the
sum

Pf
j=1 cj. This completes the proof of Theorem 6. 2

4.5 Running Time

We now sketch an e�cient implementation of Algorithm 1. The results are
summarized in the following theorem:

Theorem 10 Algorithm 1 can be implemented to run in time O(nm�(m;n)),
where n denotes the number of nodes, m the number of edges in the graph, and
� is the inverse of Ackerman's function.

PROOF. The main e�ort lies in the computation of the minimum quotient
cost in Step 7. Suppose we have for each node v 2 V a sorted list L(v) =

11

(C1; C2; : : : ; Cp) of clusters such that c(v;C1) � c(v;C2) � : : : � c(v;Cp).
Then, the cost of the set fC1; : : : ; Crg is minimal amongst all r-element col-
lections of clusters, so we do not have to test all possible r-element sets of
clusters.

Since, for �xed v, the number p of clusters is bounded by the number of
adjacent nodes, Step 7 can be implemented to run in time O(m).

To maintain the sorted lists we use the help of a fast disjoint-set data structure
[CLR90].We initialize the data structure with the clusters formed by uncritical
edges. The costs of the clusters are computed as stated in Step 7. After each
step, we assure that the data strucuture again represents the clusters which
are formed by edges whose weight does not exceed the threshold. This is
done by merging those clusters which are connected by edges involved in the
current upgrading, i.e. those edges which are incident with nodes upgraded in
the current step. Such merging of clusters is e�ciently supported by the data
structure. The time needed in one iteration of the while loop is O(m�(m;n)).
For details we refer to [Kru96].

Since in each iteration the number of clusters is decreased by at least 1, there
are at most n iterations. This results in a total running time ofO(nm�(m;n)).

Using Lemma 3 we obtain the following approximation result for the dual
problem.

Theorem 11 There exists an approximation algorithm for (Bottleneck,
Node Upgrading Cost, Spanning Tree) with performance (1; 2 ln n). It
can be implemented to run in time O(nm�(m;n) log n). 2

5 Treewidth-Bounded Graphs

In this section we will show that (Node Upgrading Cost, Bottleneck,
Spanning Tree) can be solved in polynomial time if restricted to the class of
treewidth-bounded graphs. For the sake of a better presentation we will �rst
show how to solve the problem in polynomial time on series-parallel graphs.
Then, we will describe how the ideas carry over to treewidth-bounded graphs.

Treewidth-bounded graphs were introduced by Robertson and Seymour [RS90].
Independently, Bern, Lawler and Wong [BLW87] introduced the notion of de-
composable graphs. Later, it was shown [AC+93] that the class of decomposable
graphs and the class of treewidth-bounded graphs coincide. A class of decom-
posable graphs � is given by a set of recursive rules that satisfy the following
conditions [BLW87]:

12

(1) The rules de�ne a �nite number of primitive graphs.
(2) Each graph in � has an ordered (possibly empty) set of special nodes

called terminals. The number of terminals in each graph is bounded by
a global constant.

(3) There is a �nite collection of binary composition rules that operate only
at terminals, either by identifying two terminals or adding an edge (called
attachment edge) between terminals. A composition rule also determines
the terminals of the resulting graph, which must be a subset of the ter-
minals of the two graphs being composed.

Series-parallel graphs are an example of decomposable graphs and can be
de�ned by the following rules [BLW87].

(1) The set of primitive graphs consists of the single graph P with vertex set
fs; tg and the single edge (s; t). The vertex s is the \start-terminal" of P
and the vertex t is the \end-terminal" of P .

(2) Let G1 = (V1; E1) and G2 = (V2; E2) be series-parallel graphs with ter-
minals s1, t1 and s2, t2 respectively. Then

(a) The graph obtained by identifying t1 and s2 is a series-parallel graph,
with s1 and t2 as its terminals. This graph is the series composition of
G1 and G2.

(b) The graph obtained by identifying s1 and s2 and also t1 and t2 is a
series-parallel graph, the parallel composition of G1 and G2. This graph
has s1(= s2) and t1(= t2) as its terminals.

Let � be any class of decomposable graphs. Following [BLW87], we assume
that a given graph G 2 � is accompanied by a parse tree specifying how G
is constructed using the rules. The size of the parse tree is linear in the size
of G. Moreover, we may assume without loss of generality that the parse tree
is a binary tree.

5.1 Restriction to Series-Parallel Graphs

Let G be a series-parallel graph with the two terminals s and t. We call an
edge subgraph G0 of G consisting of two disjoint spanning trees containing s
and t respectively a terminal forest.

For a set M � fs; tg, de�ne C(M) to be the least cost of an upgrading set
W in G with W \ fs; tg =M such that after upgrading this set G contains a
bottleneck spanning tree of delay at most D. If there is no upgrading set W
such that the bottleneck delay can be reduced to be at mostD andW\fs; tg =
M , then C(M) := +1. In the same way as we de�ned C, we de�ne C 0 for
the minimum upgrading cost to obtain a terminal forest of bottleneck delay
at most D.

13

Clearly, if we know the four values C(M), we can tell the optimum objective
function value. We will now show that for a series-parallel graph G we can
compute C and C 0 by using the information of the decomposition tree of G in
a total of O(n +m) time. The basic idea is to keep track of which terminals
belong to an optimal upgrading set. In the sequel we write M n v and M [v
instead of M n fvg and M [fvg, respectively, for the sake of brevity.

First, we will take care of the case that G is the series composition of G1 and
G2. Assume that we have already computed the values C and C 0 for G1 and
G2. Denote them by C1, C 0

1 and C2, C 0
2 respectively.

It is easy to see that the restriction of any tree T to G1 and G2, respectively,
is again a tree. Thus, we can compute C with the help of C1 and C2 in the
following way.

C(M) = min
n
C1(M n t) + C2(M n s); C1(M [t) + C2(M [s)� c(t1)

o

The �rst term above considers the case when the terminal t1(= s2) is not
upgraded. The second term takes care of t1 being upgraded.

Similarly, we now compute C 0 for G. A terminal forest in G must either be
a terminal forest in G1 and a tree in G2 or vice versa. No other possibilities
exist. It now follows that C can be computed by

C 0(M) = min
n
C 0
1(M n t) + C2(M n s); C

0
1(M [t) + C2(M [s)� c(t1);

C1(M n tg) + C 0
2(M n s); C1(M [t) + C 0

2(M [s)� c(t1)
o
:

We now consider the case that G is parallely composed fromG1 and G2. Again,
we assume that the two arrays C and C 0 are already available for G1 and G2.

We start with the computation of C. A tree T in G must be a tree in exactly
one of the graphs G1 and G2 and a terminal forest in the second one. We just
need to distinguish between the cases covering the upgrade of the terminals
of G1 and G2. We must make sure that s1 is upgraded if and only if s2 is. We
thus obtain C by the following formula:

C(fs; tg) = minfC 0
1(fs; tg) + C2(fs; tg)� c(s1)� c(t1);

C1(fs; tg) + C 0
2(fs [tg)� c(s1)� c(t1)g;

C(ftg) = minfC 0
1(ftg) + C2(ftg)� c(t1); C1(ftg) + C 0

2(ftg)]� c(t1)g;

C(fsg) = minfC 0
1(fsg) + C2(fsg)� c(s1); C1(fsg) + C 0

2(fsg)� c(s1)g;

C(;) = minfC 0
1(;) + C2(;); C1(;) + C 0

2(;)g:

14

We proceed with C 0. If G0 is a terminal forest of G, it is straightforward to
see that the restriction to both graphs G1 and G2 is a terminal forest of that
particular graph. Thus, C 0 can be computed by using the information from
C 0
1 and C 0

2 by the following formula:

C(fs; tg) = C 0
1(fs; tg) + C 0

2fs; tg � c(s1)� c(t1);

C(ftg) = C 0
1(ftg) + C 0

2(ftg)� c(t1);

C(fsg) = C 0
1(fsg) + C 0

2(fsg)� c(s1);

C(;) = C 0
1(;) + C 0

2(;):

Finally, observe that for a series-parallel graph consisting of the two terminals
s and t and the edge (s; t) we can trivially compute the arrays C and C 0.

Using the above recurrences, the array C can be computed in linear time
for a series parallel graph G, provided a decomposition tree for G is given.
Since such a decomposition tree with O(n + m) nodes can be computed in
O(n + m) time [VTL82], we can conclude that the dynamic programming
algorithm presented above runs in total time O(n + m). It should be noted
that by also keeping track of the respective upgrading sets we can not only
�nd the optimal function value but also the optimal upgrading set.

Theorem 12 If restricted to the class of series-parallel graphs, the problem
(Node Upgrading Cost, Bottleneck, Spanning Tree) can be solved
optimally in O(n+m)-time. 2

5.2 Extension to Treewidth-Bounded Graphs

Theorem 13 If restricted to any class of treewidth bounded graphs with no
more than k terminals, where k is �xed, the problem (Node Upgrading
Cost, Bottleneck, Spanning Tree) can be solved optimally in time
O((2k)2k(n +m)).

PROOF. Let t1; : : : ; tk be the terminals of G and let � be a partition of these
terminals. De�ne a �-terminal forest F to be a spanning forest of G with the
following properties:

(1) For each block of � the forest F contains a tree spanning all the vertices
in that block.

(2) No pair of trees is connected.

The notion of a �-terminal forest generalizes the concept of spanning trees and
terminal forests introduced above. In the case of series-parallel graphs, the set
of terminals is fs; tg. The possible partitions of fs; tg are �1 = (fs; tg; ;) and

15

�2 = (fsg; ftg). Partition �1 corresponds to a spanning tree of G, while �2
gives us a terminal tree.

We keep the following information along with each partition � of terminals of
G and each subset M of the terminals ft1; : : : ; tkg.

C�(M) := Minimumcost of a subsetW � V withW\ft1; : : : ; tkg =M
such that after upgrading the vertices in W the graph G
contains a �-terminal forest of bottleneck cost at most D.

For the above de�ned cost, if there is no subset W � V satisfying the required
conditions the value of C�(M) is de�ned to be +1. Note that the number
of cost values associated with any graph in � is O((2k)k). We now show how
the cost values can be computed in a bottom-up manner given the parse tree
for G. Since the method is very similar to the case of series-parallel graphs
treated above we only sketch the main ideas.

To begin with, since � is �xed, the number of primitive graphs is �nite. For a
primitive graph, each cost value can be computed in constant time, since the
number of forests to be examined is �xed. Now consider computing the cost
values for a graph G constructed from subgraphs G1 and G2, where the cost
values for G1 and G2 have already been computed.

Let a partition � and a subset M of the terminals ft1; : : : ; tpg of G be given.
Any upgrading setW in G withW\ft1; : : : ; tpg =M resulting in a �-terminal
tree of bottleneck delay at most D induces two upgrading sets, one in G1 and
one in G2. Since we have maintained the best cost values for all possibilities
for G1 and G2, we can reconstruct for the partition � and the set M the cost
value C�(M). We can do this in time independent of the sizes of G1 and G2

because they interact only at the terminals to formG, and we have maintained
all relevant information.

Hence we can generate all possible cost values for G by considering combina-
tions of all relevant pairs of cost values for G1 and G2. This takes timeO(1) per
combination for a total time of O(22k �k2k). As in [BLW87], we assume that the
size of the given parse tree for G is O(n+m). Thus the dynamic programming
algorithm takes time O((2k)2k(n+m)). This completes the proof.

The algorithm presented in the proof of the last theorem, although being linear
for �xed k, is only practical for small values of k, since the constant factor
(2k)2k in front of the n + m grows extremely fast with k. Thus, the above
results might be considered to be more of theoretical interest than application
oriented.

16

6 Hardness Results

In this section we establish our hardness results for the node upgrading prob-
lems under study. We show that (Node Upgrading Cost, Bottleneck,
Spanning Tree) is hard to approximate within a logarithmic factor.

We �rst recall the results from [Fei96] about the hardness of approximating
Minimum Dominating Set and Min Set Cover.

Theorem 14 Unless NP � DTIME(NO(log logN)), the Minimum Dominat-
ing Set problem on a graph with n vertices can not be (polynomial time)
approximated within a factor of � < lnn.

Moreover, the Min Set Cover problem, with a ground set M , can not be
approximated within a factor of � < ln jM j.

Theorem 15 For an instance of (Node Upgrading Cost, Bottleneck,
Spanning Tree) denote by n the number of nodes in the input graph. Let
� < 1=2 � lnn, and f be any polynomial time computable function. Then,
unless NP � DTIME(NO(log logN)), there is no polynomial time approximation
algorithm for (Node Upgrading Cost, Bottleneck, Spanning Tree)
with performance (�; f(n)).

PROOF. We give a reduction from Minimum Dominating Set [GJ79,
Problem GT2]. An instance of Minimum Dominating Set consists of a
graph G = (V;E). A dominating set is a subset V 0 � V of nodes, such
that each node w =2 V 0 is adjacent to a node of V . A Dominating Set of an
instance I is a solution for Minimum Dominating Set, if its cardinality is
minimal amongst all Dominating Sets of I.

Given an instance G = (V;E) of Minimum Dominating Set with n :=
jV j nodes, we construct an instance G0 = (V 0; E 0) of (Node Upgrading
Cost, Bottleneck, Spanning Tree) as follows. First, insert all nodes
and edges from G into G0. Then, add a new node r (the root) and connect it
to all nodes of V . The number of nodes in G0 equals n0 = n + 1. Notice that
lnn0 = ln(n+ 1) � ln(n2) = 2 ln n.

The upgrading cost of the root are set to c(r) := L := dn ln ne + 1, the
upgrading costs for the remaining nodes are set to 1. For each edge e0 2 E0, we
set d0(e0) := f(n0) + 1 and d1(e0) := d2(e0) := 1. The bound on the bottleneck
weight of the resulting MST is set to 1.

If U is a Dominating Set in G, then there is a set of nodes to upgrade in G0

such that the cost for upgrading are no more than jU j and that the resulting

17

MST has bottleneck weight no more than 1. To see this, upgrade all nodes
in U . Clearly, the upgrade cost are exactly jU j. The resulting MST is a tree
of height 2: its root is the node r, at �rst level there are all upgraded nodes
(i.e. those in U), and at second level all remaining nodes (i.e. those in V �U).
Since all edges of this tree are incident with a node of level 1, the weight of
all edges is 1.

Let there be an (�; f(n0))-approximation algorithm for (Node Upgrading
Cost, Bottleneck, Spanning Tree). Denote by T 0 the resulting MST
of G0. The bottleneck weight of T 0 is no more than f(n0). Therefore all of its
edges have weight 1 and the upgraded nodes must form a Dominating Set
on G0.

Let OPT � n be the cost of an optimal upgrade node set. Then, the upgrading
cost of T 0 is at most OPT � � � n � 1=2 � lnn0 � n lnn < L. Consequently, the
root cannot be upgraded in the produced solution. Hence the set of upgraded
nodes forms a Dominating Set on G.

We conclude that the algorithm can be used as an �-approximation algorithm
forMinimum Dominating Set which is a contradiction to the result of Feige
[Fei96].

A similar construction shows the hardness even in the case that all vertices
have upgrading cost 1.

Theorem 16 (Node Upgrading Cost, Bottleneck, Spanning Tree)
is NP-hard even if all vertices have upgrading cost 1. Also, unless NP �
DTIME(NO(log logN)), even in this unit cost case for any � < 1=3 � lnn, and
polynomial time computable function f there is no polynomial time approxi-
mation algorithm with performance (�; f(n)).

PROOF. We use a similar reduction as in the proof of the preceeding the-
orem. The instance G0 = (V 0; E0) of (Node Upgrading Cost, Bottle-
neck, Spanning Tree) is constructed as follows. First, insert all nodes and
edges from G into G0. Then add a new node r (the root) and connect it to
all nodes of V . Third, for each star in G with center v and �ngers N(v), set
up a collection L(v) of new nodes. Connect each of these nodes to all nodes
of fvg[N(v). Choose the number L of the nodes in L(v) as L = dn lnne+1.

Let K := n + Ln, then the number of nodes in G0 equals n0 = K + 1. Notice
that lnn0 = ln((L+ 1)n+ 1) = ln(ndn ln ne+ 2n + 1) �ae ln(n3) = 3 lnn.

The upgrading cost of each node equals 1 per de�nition. For each edge e0 2 E0,
we set d0(e0) := f(n0) + 1 and d1(e0) := d2(e0) := 1. The bottleneck weight

18

bound on (Upgrading Size, Total Weight, Spanning Tree) is set to 1.

As before, upgrading all nodes in U results in an MST of bottleneck weight 1:
its root is r, at �rst level are the nodes of U , at second level the nodes of V �U .
We now have to deal with the remaining nodes in the collections L(v) for each
v 2 V . Since U is a dominating set in G, each star fvg [N(v) around v must
contain at least one node v0 which is contained in U . So, we can connect all
nodes of L(v) through edges of weight 1 via v0 to the MST. Therefore, all the
edges in the resulting MST have weight 1.

Let there be an (�; f(n0))-approximation algorithm for (Upgrading Size,
Total Weight, Spanning Tree). Denote by T 0 the resulting MST of G0.
All edges of T 0 have weight 1.

Let OPT � n be the cost of an optimal chosen upgrade set. Then, the upgrad-
ing cost of T 0 is at most OPT �� � n �1=3 � lnn0 � n lnn < L. Consider the star
around an arbitrary node v. Each of the nodes in L(v) is connected via a light
edge to the tree. If none of the nodes in the star would be upgraded, then each
of the L nodes in L(v) must be upgraded which would exceed the available
budget. Therefore, at least one node of each star of G is upgraded and the set
of upgraded nodes, restricted to the node set V , forms a Dominating Set of G.
We conclude that the algorithm can be used as an �-approximation algorithm
for Minimum Dominating Set which is a contradiction as before.

References

[AC+93] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese, An algebraic
theory of graph reductions, Journal of the ACM 40 (1993), no. 5, 1134{
1164.

[Ber92] O. Berman, Improving the location of minisum facilities through network
modi�cation, Annals of Operations Research 40 (1992), 1{16.

[BLW87] M. W. Bern, E. L. Lawler, and A. L. Wong, Linear-time computation of
optimal subgraphs of decomposable graphs, Journal of Algorithms 8 (1987),
216{235.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
algorithms, MIT Press, 1990.

[Fei96] U. Feige, A threshold of lnn for approximating set cover, Proceedings
of the 28th Annual ACM Symposium on the Theory of Computing
(STOC'96), 1996, pp. 314{318.

[GJ79] M. R. Garey and D. S. Johnson, Computers and intractability (a guide to
the theory of NP-completeness), W.H. Freeman and Company, New York,
1979.

19

[HT97] S. E. Hambrush and H.-Y. Tu, Edge weight reduction problems in directed
acyclic graphs, Journal of Algorithms 24 (1997), 66{93.

[KM+98] S. O. Krumke, M. V. Marathe, H. Noltemeier, R. Ravi, and S. S. Ravi,
Network improvement problems, AMS-DIMACS Volume Series on Discrete
Mathematics and Theoretical Computer Science: Workshop on Network
Design and Location Theory, 1998.

[KN+96] S. O. Krumke, H. Noltemeier, S. S. Ravi, M. V. Marathe, and K. U.
Drangmeister, Modifying networks to obtain low cost trees, Proceedings
of the 22nd International Workshop on Graph-Theoretic Concepts in
Computer Science, Cadenabbia, Italy, Lecture Notes in Computer Science,
vol. 1197, June 1996, pp. 293{307.

[KN+97] S. O. Krumke, H. Noltemeier, S. S. Ravi, M. V. Marathe, and
K. U. Drangmeister, Modifying networks to obtain low cost subgraphs,
Theoretical Computer Science, 1997, to appear.

[KR93] P. Klein and R. Ravi, A nearly best-possible approximation for node-
weighted Steiner trees, Proceedings of the 3rd MPS conference on Integer
Programming and Combinatorial Optimization, 1993, pp. 323{332.

[Kru96] S. O. Krumke, On the approximability of location and network design
problems, Ph.D. thesis, Lehrstuhl f�ur Informatik I, Universit�at W�urzburg,
December 1996.

[LR88] F. T. Leighton and S. Rao, An approximate max-
ow min-cut theorem for
uniform multicommodity
ow problems with application to approximation
algorithms, Proceedings of the 29th Annual IEEE Symposium on the
Foundations of Computer Science (FOCS'88), 1988, pp. 422{431.

[Phi93] C. Phillips, The network inhibition problem, Proceedings of the 25th
Annual ACM Symposium on the Theory of Computing (STOC'93), May
1993, pp. 288{293.

[PS95] D. Paik and S. Sahni, Network upgrading problems, Networks 26 (1995),
45{58.

[RM+93] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt
III, Many birds with one stone: Multi-objective approximation algorithms,
Proceedings of the 25th Annual ACM Symposium on the Theory of
Computing (STOC'93), May 1993, pp. 438{447.

[RS90] N. Robertson and P. Seymour, Graph minors IV, treewidth and well-quasi-
ordering, Journal of Combinatorial Theory, Series B 48 (1990), 227{254.

[VTL82] J. Valdes, R. E. Tarjan, and E. L. Lawler, The recognition of series-parallel
digraphs, SIAM Journal on Computing 1 (1982), 1{12.

20

